Hierarchical Information-Based Clustering for Connectivity-Based Cortex Parcellation

نویسندگان

  • Nico S. Gorbach
  • Christoph Schütte
  • Corina Melzer
  • Mathias Goldau
  • Olivia Sujazow
  • Jenia Jitsev
  • Tania S. Douglas
  • Marc Tittgemeyer
چکیده

One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections ("the connectional fingerprint") and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex

Parcellation of the human cortex has important implications in neuroscience. Parcellation is often a crucial requirement before meaningful regional analysis can occur. The human cortex can be parcellated into distinct regions based on structural features, such as gyri and sulci. Brain network patterns in a given region with respect to its neighbors, known as connectional fingerprints, can be us...

متن کامل

Information-Theoretic Connectivity-Based Cortex Parcellation

One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections ("the connectional fingerprint") and, hence, a segregated cortical area may be characterized by a highly c...

متن کامل

Parcellation of left parietal tool representations by functional connectivity.

Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during fu...

متن کامل

Parcellation of the primary cerebral cortices based on local connectivity profiles

Connectivity-based parcellation using diffusion MRI has been extensively used to parcellate subcortical areas and the association cortex. Connectivity profiles are vital for connectivity-based parcellation. Two categories of connectivity profiles are generally utilized, including global connectivity profiles, in which the connectivity information is from the seed to the whole brain, and long co...

متن کامل

Connectivity-based parcellation of the human orbitofrontal cortex.

The primate orbitofrontal cortex (OFC) is involved in reward processing, learning, and decision making. Research in monkeys has shown that this region is densely connected with higher sensory, limbic, and subcortical regions. Moreover, a parcellation of the monkey OFC into two subdivisions has been suggested based on its intrinsic anatomical connections. However, in humans, little is known abou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011